jueves, 8 de septiembre de 2016

FUNCIÓN CUADRATICA

Función cuadrática


Una función cuadrática es aquella que puede escribirse como una ecuación de la forma:

f(x) = ax + bx + c

donde (llamados términos ) son números reales cualesquiera y es distinto de cero (puede ser mayor o menor que cero, pero no igual que cero). El valor de y de sí puede ser cero .
En la ecuación cuadrática cada uno de sus términos tiene un nombre.
Así,
ax es el término cuadrático
bx es el término lineal
es el término independiente
Cuando estudiamos la ecuación de segundo grado o cuadrática vimos que si la ecuación tiene todos los términos se dice que es un ecuación completa , si a la ecuación le falta el término lineal o el independiente se dice que la ecuación es incompleta .

Representación gráfica de una función cuadrática

Si pudiésemos representar en una gráfica "todos" los puntos [x,f(x)] de una función cuadrática , obtendríamos siempre una curva llamada parábola 
Como contrapartida, diremos que una parábola es la representación gráfica de una función cuadrática .
Dicha parábola tendrá algunas características o elementos bien definidos dependiendo de los valores de la ecuación que la generan.
Estas características o elementos son:
Orientación o concavidad (ramas o brazos)
Puntos de corte con el eje de abscisas (raíces)
Punto de corte con el eje de ordenadas
Eje de simetría
Vértice
Orientación o concavidad
Una primera característica es la orientación concavidad de la parábola. Hablamos de parábola cóncava si sus ramas o brazos se orientan hacia arriba y hablamos de parábola convexa si sus ramas o brazos se orientan hacia abajo.
Esta distinta orientación está definida por el valor (el signo) que tenga el término cuadrático (la ax :
Si  a > 0 (positivo) la parábola es cóncava o con puntas hacia arriba, como en f(x) = 2x − 3x − 5

x

Si  a < 0 (negativo) la parábola es convexa o con puntas hacia abajo, como en f(x) = −3x + 2x + 3

x

Además, cuanto mayor sea |a| (el valor absoluto de a), más cerrada es la parábola.

Puntos de corte en el eje de las abscisas (Raíces o soluciones) (eje de las X)

Otra característica o elemento fundamental para graficar una función cuadrática la da el valor o los valores que adquiera , los cuales deben calcularse.
Ahora, para calcular las raíces (soluciones) de cualquier función cuadrática calculamos
f (x) = 0 .
Esto significa que las raíces (soluciones) de una función cuadrática son aquellos valores  de x para los cuales la expresión vale 0; es decir, los valores de x tales que y = 0 ; que es lo mismo que f(x) = 0 .
Entonces hacemos
ax² + bx +c = 0
Como la ecuación ax² + bx +c = 0 posee un término de segundo grado, otro de primer grado y un término constante, no podemos aplicar las propiedades de las ecuaciones, entonces, para resolverla usamos la fórmula:
funcion_cuadr_graficar003
Entonces, las raíces o soluciones de la ecuación cuadrática nos indican los puntos de intersección de la parábola con el eje de las X (abscisas) .
Respecto a esta intersección, se pueden dar tres casos:
Que corte al eje X en dos puntos distintos
Que corte al eje X en un solo punto (es tangente al eje x)
Que no corte al eje X
Esta característica se puede determinar analizando el discriminante , ya visto en las ecuaciones cuadráticas .
Ver: PSU: Matemática;

Punto de corte en el eje de las ordenadas (eje de las Y)

En el eje de ordenadas (Y) la primera coordenada es cero , por lo que el punto de corte en el eje de las ordenadas lo marca el valor de c (0, c) .
Veamos:
Representar la función f(x) = x² − 4x + 3

x 
El eje de las ordenadas (Y) está cortado en +3
Representar la función f(x) = x² − 4x − 3

x 
El eje de las ordenadas (Y) está cortado en −3

Observar que la parábola siempre cortará al eje de las ordenadas (Y), pero como ya vimos más arriba al eje de abscisas (X) puede que no lo corte, lo corte en dos puntos o solamente en uno.

Eje de simetría o simetría

Otra característica o elemento de la parábola es su eje de simetría .
El eje de simetría de una parábola es una recta vertical que divide simétricamente a la curva; es decir, intuitivamente la separa en dos partes congruentes. Se puede imaginar como un espejo que refleja la mitad de la parábola.
Su ecuación está dada por:
funcion_cuadr_graficar005 
Donde son las raíces de la ecuación de segundo grado en , asociada a la parábola.
De aquí podemos establecer la ecuación del eje de simetría de la parábola:
funcion_cuadr_graficar004

x
Vértice
Como podemos ver en gráfico precedente, el vértice de la parábola es el punto de corte (o punto de intersección) del eje de simetría con la parábola y tiene como coordenadas
funcion_cuadr_graficar008
La abscisa de este punto corresponde al valor del eje de simetría funcion_cuadr_graficar006 y la ordenada corresponde al valor máximo o mínimo de la función, funcion_cuadr_graficar007según sea la orientación de la parábola (recuerde el discriminante )
EJEMPLOS:

Determinar la ecuación conocidos tres puntos[editar]

Función cuadrática 03.svg
Partiendo de la forma de la ecuación:
y conocidos tres puntos del plano xy por los que pasa una función polinómica de segundo grado:
se cumplirá que:
con lo que tenemos un sistema de tres ecuaciones con tres incógnitas, donde las incógnitas son: a, b y c, este sistema tendrá solución si el determinante de los coeficientes de las incógnitas es distinto de cero.
Representando el sistema ordenado de forma convencional:
Con lo que podemos calcular los valores de los coeficientes:

- http://contenidosdigitales.ulp.edu.ar/exe/matematica3/ejemplos_resueltos2.html

- http://www.vitutor.com/fun/2/e_c.html

Resultado de imagen para ejemplos de funcion cuadratica
Resultado de imagen para ejemplos de funcion cuadratica
Resultado de imagen para ejemplos de funcion cuadratica
VIDEOS:
- https://www.youtube.com/watch?v=viZ5itmmq2Y
-  https://www.youtube.com/watch?v=0pUnHF1FJ2s
- https://www.youtube.com/watch?v=aaHJAWA64A4
-

No hay comentarios.:

Publicar un comentario